Crx-L253X Mutation Produces Dominant Photoreceptor Defects in TVRM65 Mice

نویسندگان

  • Philip A. Ruzycki
  • Courtney D. Linne
  • Anne K. Hennig
  • Shiming Chen
چکیده

Purpose The cone-rod homeobox (CRX) transcription factor is essential for photoreceptor gene expression, differentiation, and survival. Human CRX mutations can cause dominant retinopathies of varying onset and phenotype severity. In animal models, dominant frameshift Crx mutations introduce a premature termination codon (PTC), producing inactive truncated proteins that interfere with normal CRX function. Previously, a mutant mouse, TVRM65, was reported to carry a recessive late PTC mutation, Crx-L253X. More detailed phenotype analysis of the pathogenicity of Crx-L253X sheds new light on the variability of CRX-linked diseases. Methods Homozygous (L253X/X); heterozygous (L253X/+); Crx-/- and control C57BL/6J (WT) mice were analyzed at various ages for changes in retinal function (ERG), morphology (histology) and photoreceptor gene expression (qRT-PCR). Results At 1 month, L253X/X mice lack visual function, show greater reductions in retinal thickness, and distinct gene expression changes relative to Crx-/-, suggesting that the phenotype of L253X/X is more severe than Crx-/-. L253X/+ mice have reduced rod/cone function, but normal retinal morphology at all ages tested. qRT-PCR assays described a complex phenotype in which both developing and mature photoreceptors are unable to maintain proper gene expression. L253X mRNA/protein is overexpressed relative to normal Crx, suggesting a pathogenic mechanism similar to early PTC mutations. However, the overexpression is less pronounced, correlating with a relatively mild dominant phenotype. Conclusions The L253X mouse provides a valuable model for CRX-associated retinopathy. The pathogenicity of CRX frameshift mutations depends on the position of the PTC, which in turn determines the degree of mutant mRNA/protein overproduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistically Distinct Mouse Models for CRX-Associated Retinopathy

Cone-rod homeobox (CRX) protein is a "paired-like" homeodomain transcription factor that is essential for regulating rod and cone photoreceptor transcription. Mutations in human CRX are associated with the dominant retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD) and Leber Congenital Amaurosis (LCA), with variable severity. Heterozygous Crx Knock-Out (KO) mice ("+/-") have nor...

متن کامل

Cone-Rod Dystrophy Due to Mutations in a Novel Photoreceptor-Specific Homeobox Gene (CRX) Essential for Maintenance of the Photoreceptor

Genes associated with inherited retinal degeneration have been found to encode proteins required for phototransduction, metabolism, or structural support of photoreceptors. Here we show that mutations in a novel photoreceptor-specific homeodomain transcription factor gene (CRX) cause an autosomal dominant form of cone-rod dystrophy (adCRD) at the CORD2 locus on chromosome 19q13. In affected mem...

متن کامل

OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness.

Leber congenital amaurosis (LCA) encompasses a set of early-onset blinding diseases that are characterized by vision loss, involuntary eye movement, and nonrecordable electroretinogram (ERG). At least 19 genes are associated with LCA, which is typically recessive; however, mutations in homeodomain transcription factor CRX lead to an autosomal dominant form of LCA. The mechanism of CRX-associate...

متن کامل

Mutations in the Cone-Rod Homeobox Gene Are Associated with the Cone-Rod Dystrophy Photoreceptor Degeneration

Crx is a novel paired-like homeodomain protein that is expressed predominantly in retinal photoreceptors and pinealocytes. Its gene has been mapped to chromosome 19q13.3, the site of a disease locus for autosomal dominant cone-rod dystrophy (CORDII). Analysis of the proband from a family with autosomal dominant CORD revealed an Arg41Trp substitution in the third residue of the CRX homeodomain. ...

متن کامل

Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation.

The homeodomain transcription factor Crx is required for expression of many photoreceptor genes in the mammalian retina. The mechanism by which Crx activates transcription remains to be determined. Using protein-protein interaction assays, Crx was found to interact with three co-activator proteins (complexes): STAGA, Cbp and p300, all of which possess histone acetyl-transferase (HAT) activity. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2017